New particle formation and growth from methanesulfonic acid, trimethylamine and water.

نویسندگان

  • Haihan Chen
  • Michael J Ezell
  • Kristine D Arquero
  • Mychel E Varner
  • Matthew L Dawson
  • R Benny Gerber
  • Barbara J Finlayson-Pitts
چکیده

New particle formation from gas-to-particle conversion represents a dominant source of atmospheric particles and affects radiative forcing, climate and human health. The species involved in new particle formation and the underlying mechanisms remain uncertain. Although sulfuric acid is commonly recognized as driving new particle formation, increasing evidence suggests the involvement of other species. Here we study particle formation and growth from methanesulfonic acid, trimethylamine and water at reaction times from 2.3 to 32 s where particles are 2-10 nm in diameter using a newly designed and tested flow system. The flow system has multiple inlets to facilitate changing the mixing sequence of gaseous precursors. The relative humidity and precursor concentrations, as well as the mixing sequence, are varied to explore their effects on particle formation and growth in order to provide insight into the important mechanistic steps. We show that water is involved in the formation of initial clusters, greatly enhancing their formation as well as growth into detectable size ranges. A kinetics box model is developed that quantitatively reproduces the experimental data under various conditions. Although the proposed scheme is not definitive, it suggests that incorporating such mechanisms into atmospheric models may be feasible in the near future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations.

Airborne particles affect human health and significantly influence visibility and climate. A major fraction of these particles result from the reactions of gaseous precursors to generate low-volatility products such as sulfuric acid and high-molecular weight organics that nucleate to form new particles. Ammonia and, more recently, amines, both of which are ubiquitous in the environment, have al...

متن کامل

Ion pair particles at the air-water interface.

Although the role of methanesulfonic acid (HMSA) in particle formation in the gas phase has been extensively studied, the details of the HMSA-induced ion pair particle formation at the air-water interface are yet to be examined. In this work, we have performed Born-Oppenheimer molecular dynamics simulations and density functional theory calculations to investigate the ion pair particle formatio...

متن کامل

Atmospheric nanoparticles formed from heterogeneous reactions of organics

Atmospheric aerosols directly and indirectly affect the radiative balance of the Earth’s atmosphere1. Nanoparticles are a key component of atmospheric aerosols, growing rapidly under ambient conditions2–4. Organic species are thought to lead to the growth of nanoparticles smaller than 20 nm (refs 5, 6), but the identity of these species and the underlying chemical mechanisms remain elusive. Her...

متن کامل

Conversion of Alcohols into Amides Using Alumina-Methanesulfonic Acid (AMA) in Nitrile Solvents

The reaction of tertiary, secondary and benzylic alcohols with different nitriles in the presence of alumina-methanesulfonic acid (AMA) as a new reagent affords the corresponding amides in good yields (Table 1, 2). Conversion of 2,6-bis(hydroxymethyl)-4-halo anisoles into corresponding diamides in the range of 68-76% yields (Table 3) are also included in this paper.

متن کامل

Facile and mild synthesis of 1-substituted-1H-1,2,3,4-tetrazoles catalyzed by methanesulfonic acid under solvent-free conditions

Methanesulfonic acid (MSA) was found to be an efficient catalyst for the synthesis of 1-substituted-1H-1,2,3,4-tetrazoles. A series of 1-substituted tetrazole compounds were synthesized from the reaction of various primary amines, sodium azide and triethyl orthoformate in the presence of catalytic amounts of MSA at room temperature. In this protocol, some of the tetrazole derivatives were synth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 2015